מתמטיקה ותרבות
תרבות מתאפיינת בריבוי מרכיביה, בהיקף תופעותיה ובהשפעתה על תחומים רבים בחיי האדם. המתמטיקה אינה מערכת של טכניקות שמבודדת מהתרבות האנושית, היא תופסת את מקומה הנכבד בתוך מסכת שלימה שמקשרת בין הפן המעשי, החשיבה האחריות האישית והשפה. כדאי להקנות את התחושה הזאת לילדינו. שילוב של תכנים היסטוריים בהוראת המתמטיקה יוסיפו עומק להיבט התרבותי של המקצוע. אפשר גם לשלב תכנים מהמסורת ומהמקורות שלנו, למשל, במקורות העתיקים של היהדות מופיעה המתמטיקה לא כענף מדעי תיאורטי ותלוש מהמציאות אלא ככלי שימושי שנוגע לבעיות הלכתיות יום יומיות. במקומות מסוימים, הסקרנות האינטלקטואלית והאופקים הרחבים של חכמי ישראל גרמו להם להרחיב את הדיונים אל מעבר לבעיה הקונקרטית, וכפי שנראה להלן, אם ניגשים אל הטקסטים בצורה פתוחה ובלתי מגמתית, אפשר למצוא טענות ותוצאות מעניינות במיוחד.
הנה דוגמה אישית: לימדתי את בני, אביב, על פאי ועם כל מיני הדגמות על מהותו ועל אופן הערכתו וחישובו גם מצאתי לנכון להעלות את הקשר למקורות. בספר דברי הימים ובמלכים יש הוראות על בניית כיור שקוטרו 10 אמה והיקפו 30 אמה ומכאן מקישים שהיחס בין ההיקף לקוטר הוא 3 (קירוב לא רע, אבל גס בהרבה ממה שהיה ידוע באותה התקופה על ידי היוונים ועל ידי הבבלים, כנראה). שאל אביב, מה זה אומר על הציטוט מהתנ"ך: האם אכן "דיברה תורה בלשון בני אדם" והטקסט וההוראות הונמכו או אולי שהכתוב השתבש או שיש טעות לכותב... -- עצם הקישור מראה שהנושא אינו תלוש מהתרבות ואפילו עורר אצלו, ילד בכתה ה', מחשבה ויצר לשאול שאלות חשובות (ולא ניכנס לדיון עצמו -- המעוניינים יכולים לעניין, למשל ב- ערכים מדוייקים של פאי, בועז צבאן ודוד גרבר, או ב-דף ספר - בדד - בכל דרכיך דעהו 25 - עריכה עלי מרצבך - הוצאת אוניברסיטת בר-אילן). מידי שנה ב-14 במרץ (ויש המהדרין ומקפידים בשעה: 1 ו-59 דקות) נהוג לחגוג בעולם את יום הפאי. זאת דוגמה נוספת לקישור לתרבות -- באותו היום חוגגים כמה אירועים נוספים ומציינים אותם. הקשר למציאות ולעבר ולתרבות כמו גם לשימושים תורם ללמידה ולהבנה.
שתי דוגמאות נהדרות נוספות לקשר שבין מתמטיקה למציאות ולתרבות הן חיתוך הזהב ו-סימטריה. אפשר לקרוא ולהתרשם מהקשרים הללו למשל מספריו של מריו ליביו: חיתוך הזהב ו-שפת הסימטריה. מעניין ששני מושגים אלה באים לידי ביטוי בהקשר לנושא זכייתו בפרס נובל של פרופסור דניאל שכטמן מהטכניון.
קיים קשר הדוק בין תחומי תוכן רבים בשל היותם שזורים על פעילויות קוגניטיביות שמשותפות לכולם, אלו הן אופרציות מנטליות. אנאליזה (ניתוח), למשל, היא אופרציה מנטלית, שאנו נזקקים לה גם בעת פיתרון בעיה מתמטית וגם כאשר מנתחים יצירה ספרותית או תופעה חברתית. הוא הדין לגבי תהליכי השוואה ומיון ולגבי אופרציות מנטליות נוספות. תלמיד מתמטיקה חייב להפעיל אופרציות מנטליות מרובות, שיכולות לשמש מנוף לתהליך תיווכי.
שלמה יונה
אין תגובות:
הוסף רשומת תגובה